

Lookalike Disambiguation in Face Recognition

Arun Ross

DISTANCE: 0.33

DISTANCE: 0.39

Professor Michigan State University

rossarun@cse.msu.edu

http://iprobe.cse.msu.edu

Work done with Thomas Swearingen

Publication

 T. Swearingen and A. Ross, "Lookalike Disambiguation: Improving Face Identification Performance at Top Ranks," Proc. of 25th International Conference on Pattern Recognition (ICPR 2020), January 2021

Lookalike Faces

- In this presentation we are <u>not</u> considering "lookalike faces" from a human vision standpoint
- <u>Not</u> specifically considering twins, siblings, and other types of kinship relationships
- We are considering "lookalike faces" from a computer vision standpoint
 - Face images of different identities that are "confused" to be the same by a face matcher

Examples of Lookalike Faces

LFW Dataset | COTS Matcher

Page: 4

Identification versus Similarity

- Most face recognition methods <u>do not</u> explicitly consider the notion of **similarity** during the training phase
- Face images are **labeled** with identifiers
- Then the method attempts to minimize intra-class variations and maximize inter-class variations

During this process, the degree of similarity between different identities is not explicitly used – since that information is typically not available during training

Training Stage

Training Set

- The distance between different identities is not explicitly specified during the training phase; it is implicitly learned by the face matcher
- But see: Sadovnik, Finding your Lookalike: Measuring Face Similarity Rather than Face Identity, CVPRW 2018

Identification Process

GALLERY:

PROBE:

Ranked Match List

Matcher Confusion

- Correct match occurs at rank 2, not rank 1
- Matcher "confuses" imposter face at rank 1 with genuine face at rank 2

These 2 face could be lookalikes

Related Work

Year	Work	Approach
2012	Srinivas: Analysis of facial marks to distinguish between identical twins	Use facial marks to distinguish twins
2012	Le: A facial aging approach to identification of identical twins	Face aging to distinguish twins
2018	Sun: Deep Siamese convolutional neural networks for identical twins and look-alike identification	Develop CNN to distinguish twins
2011	Lambda: Face recognition for look-alikes: A preliminary study	Match face regions independently
2017	Smirnov: Doppelgänger mining for face representation learning	Refine mini-batch selection of a general- purpose matcher using a list of lookalikes
2017	Moeini: Open-set face recognition across look-alike faces in real-world scenarios	Use 3D models to distinguish lookalikes

- Identical twins were an early interest where approaches focused on a specific aspect of the face
- Later approaches, focused on lookalikes more generally

Page: 10

Our Approach

- Choose some of the top ranked faces on initial ranked match list to re-rank
- Re-rank them using a lookalike disambiguator (LD)
 - LD matcher specifically trained to distinguish lookalike face images

Selecting Gallery Samples to Re-rank

Conduct an analysis to determine how the scores in the ranked match list vary in the vicinity of a correct match

 Rank 1
 Rank 10

 Image: Image

Match-Vicinity Analysis

- Find the **match-vicinity scores** for a given probe image p in a ranked match list
- Normalize score with respect to the score at **position of** correct gallery match $(d_p^{(c)})$

$$▷ s_p^{(i)} = d_p^{(i)} - d_p^{(c)}$$

- Normalized score
 - before rank c must be non-positive
 - after rank c must be non-negative

Match-Vicinity Analysis

Match-Vicinity Plot (MVP)

- MVP shows **mean** and **SD** of normalized match scores in the match vicinity for 3,728 probe images queries
- Dataset: TinyFace dataset | Matcher: ArcFace matcher

 $c \pm 5$

Page: 15

c ±20

Adaptive Re-Ranking

- MVP: distance score increases at a **higher rate** from one rank to the next **after** encountering the correct match
- Use sharp increases in distance score to determine subset selection

Adaptive Re-Ranking

- Given a probe image, p, and a gallery set, $\mathcal{G} = \{g_1, g_2, \dots, g_n\}$
- Compare p to each gallery image g_i to obtain ranked list, $\mathcal{L}=\left(d^{(1)},d^{(2)},\ldots,d^{(n)}\right)$
- Calculate rolling sum over consecutive distance scores,
 S_k
- Re-rank the top k matches
 - the smallest value of k such that $S_k > \tau$

General Purpose Matcher (GPM)

- ArcFace is a publicly-available face matcher
 - High performance on LFW dataset (99.8% accuracy)
- Outputs a 512-dimensional representation for a given input image
- Compare representations using **Euclidean distance**

Deng et al., "Arcface: Additive angular margin loss for deep face recognition," CVPR 2019

Lookalike disambiguator (LD)

- Finetunes GPM using lookalike triplets
- Lookalike triplet consists of anchor, positive, and negative samples
 - Anchor & positive sample of same subject
 - Anchor & negative samples of different subjects, but judged by GPM to be lookalikes
- Loss function

$$L = \sum_{\{I_a, I_p, I_n\}} \|f(I_a) - f(I_p)\|_2 - \|f(I_a) - f(I_n)\|_2 + \alpha_{\text{margin}}$$
Page: 19

2 triplets from 1 pair

Lookalike Triplet 1

Lookalike Pair

Lookalike Triplet 2

Lookalike disambiguator (LD)

Training Parameters

- PyTorch environment
- Stochastic gradient descent with Adam optimizer
- $\alpha_{\text{margin}} = 0.2$
- Batch Size: 32
- Learning Rate: 0.01

TinyFace Dataset

- Dataset consisting of **small** face images
 - Average size 20 x 16 pixels
- Gallery-match and Probe sets used
- Gallery contains multiple images of the same subject
- Identification experiments are **closed-set**

Set	Num. Images	Num. Subjects	
Probe	3,728	2,569	
Gallery-Match	4,443		
Gallery-Distractor	153,428	Unknown	

TinyFace Dataset

Cheng et al., "Low-resolution face recognition," ACCV 2018

Filtered TinyFace Dataset

- Dataset manually filtered to exclude profile-view faces
- Filtered dataset contains **1,145** subjects
 - 2,081 images in probe subset
 - 2,461 images in gallery subset
- Experiments conducted on filtered dataset

Lookalike Discovery

- Match gallery against itself using GPM
- Select **imposter pairs** in the distance score range [0,0.8]
- Results in ~679K lookalike pairs
 - 6.9% of all imposter pairs

Evaluation Metrics

Re-rank Subset Selection

1. Hit Rate

Fraction of probes for which the selection scheme chooses a gallery subset that **includes the correct match**

2. Surplus Size

Number of samples included in the subset with rank higher than the rank of the correct match

3. Pool Size

Number of gallery samples selected to be reranked

Parameter Selection (using gallery)

- Estimate q and τ from gallery dataset (filtered)
- Rolling sum calculated for those gallery samples that have at least 1 other gallery sample of the same subject
 - 1,897 such images
- au is the average value of the rolling sum taken at position of correct match (S_c)

a	τ	Surplus Size		Hit
q		Total	Per Search	Rate
1	0.7695	270,276	142.5	55.77%
2	1.378	294,003	155.0	61.68%
3	1.958	295,173	155.6	62.20%
4	2.511	296,353	156.2	62.63%
5	3.049	297,541	156.8	63.05%
6	3.574	298,737	157.5	63.52%
7	4.090	299,942	158.1	63.78%
8	4.597	301,152	158.8	63.94%
9	5.094	302,365	159.4	64.21%
10	5.584	303,583	160.0	64.63%

Fixed versus Adaptive

- Compare <u>Fixed</u> and <u>Adaptive</u> selection schemes
- For adaptive scheme, q = 10 and $\tau = 5.584$
- For fixed scheme, top 10% of matches are reranked (246)
- A small pool size is generally better
 - Not inherently bad: Could be that correct match occurs at a higher rank

Fixed versus Adaptive

POOL SIZE

SURPLUS SIZE

Scheme	Pool Size (min/mean/median/max)	Hit Rate
Fixed	246 246 246 246	80.1%
Adaptive	5 20.66 18 121	71.3%

Identification Performance

- Given a probe: Use
 GPM to rank gallery
 samples
- Select gallery samples to re-rank using fixed and adaptive schemes
- Re-rank top gallery samples using LD

Rank-1 identification accuracy improves from ~40.7% to ~49.6%

Summary

- Proposed an adaptive gallery selection scheme based on match scores generated using a face matcher
- Proposed the use of a separate matcher for re-ranking lookalike face images
- Observed an improvement in identification accuracy when using a Lookalike Disambiguator on the selected gallery samples

Preliminary results presented; Experiments with other datasets and matchers are ongoing; Motion can help in disambiguating as well

Publication

 T. Swearingen and A. Ross, "Lookalike Disambiguation: Improving Face Identification Performance at Top Ranks," Proc. of 25th International Conference on Pattern Recognition (ICPR 2020), January 2021

Lookalike Disambiguation in Face Recognition

Arun Ross

DISTANCE: 0.33

DISTANCE: 0.39

Professor Michigan State University

rossarun@cse.msu.edu

http://iprobe.cse.msu.edu

Work done with Thomas Swearingen