Face Morphing —
Threats, Technology, and What’s Next

Mei Ngan
Patrick Grother
Kayee Hanaoka

Jason Kuo

National Institute of Standards & Technology (NIST), US Department of Commerce

International Face Performance Conference (IFPC) 2020
October 28, 2020

National Institute of INFORMATION
g Standards and Technology 0’0’0’0’0‘ TECHNOLOGY
U.S. Department of Commerce .

LABORATORY



Agenda

* WHAT IS FACE MORPHING
* THREATS & CONSEQUENCES
* NIST FRVT MORPH EVALUATION



Face Morphing

Subject A contribution (%) | Subject B contribution (%)
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[1] M. Ferrara, A. Franco, and D. Maltoni, "Face Demorphing," IEEE Transactions on Information Forensics and Security, vol. 13, no. 4, pp. 1008-1017, April 2018.
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Switzerland: Springer International Publishing, 2016, pp. 195-222.
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Automated FR: Genuines, Impostors, and Morphs NIST
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Threats & Consequences

it

Accomplice Attacker (other identity)

Source: Ferrara, Franco, and Maltoni, The Magic Passport, IEEE International Joint
Conference on Biometrics, October 2014, pp. 1-7

Automated Border Control Gate

Source:
http://www.futuretravelexperience.com/2016/01/automated-
border-control-e-gates-go-live-at-naples-airport/

Morphing poses a threat to entities that accept
user-submitted photos for identity credentials



Morphs merge different faces together
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Deepfakes generally replace a
person in an existing image or
video with someone else’s face



Current face recognition vulnerability

Each dot represents an FR algorithm from NIST Ongoing FRVT 1:1 Verification Test
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Current face recognition vulnerability

Each dot represents an FR algorithm from NIST Ongoing FRVT 1:1 Verification Test
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2-person morphs

Subject alpha: 50% each

Morphed within sex and ethnicity label groups
Morphing Method:

Local Colorized Match — Face area is averaged
after alignment and feature warping. Subject A
provides the periphery and face area is
adjusted to match Subject A’s color histogram.

2 692 comparisons of morphs w/ other
portrait photos of constituents

90 million non-morphed comparisons on
mugshot photos



Morphing in the wild

= SPIEGEL ONLINE  spieseLem Q

Biometric passport photos

Activists smuggle photo montage into passpo

Political artists have merged two biometric photos and built the picture into a pag " =
ion about face iti

By Raphael Thelen ~v and Judith Horchert ~

Sept. 22, 2018: Member of German activist group
successfully applies for a passport with a morphed
image (containing Federica Mogherini, High
Representative of the Union for Foreign Affairs and
Security Policy)

Source (9/22/2018): http://www.spiegel.de/netzwelt/netzpolitik/biometrie-im-

reisepass-peng-kollektiv-schmuggelt-fotomontage-in-ausweis-a-1229418.html via
Google Translate

How many morphed face images has your country
detected over the past 5 years?

The number of passports/ID cards with “morphed face images” in your
country detected over the past 5 years?

;’l‘ 0 - 5 cases ,
mn

51 - 500 cases
at

om 501 - 50.000 cases
K 7-'/ y ) B%

Printers

6 - 50 cases
@ 0%

October 25, 2019: A poll from the Security
Printers 2019 Conference, Copenhagen

10
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NIST FRVT MORPH Evaluation [June 2018 — current] NIST

Automated Face Morph Detection Evaluation
* Independent, sequestered evaluation of morph detection capabilities across diverse FAISECOGNITION
datasets VENDOR TEST
* “Black-box” testing
e Ongoing testing + public reporting (report + interactive webpage)
Use Cases Collaborators
* Single-image morph detection * Department of State, USA
. . . . * Otto von Guericke University of Magdeburg, Germany
y TWO'|mage differential morph detection * Australian Defence Science and Technology Group
* 1:1 morph acceptance (FR resistance against * University of Lincoln, United Kingdom
hi * University of Bologna, Italy
morp mg) * Hochschule Darmstadt

* Norwegian University of Science and Technology
* FBl and DHS S&T, USA

FRVT MORPH Report published as NIST Interagency Report 8292 (last updated July 2020)

Ongoing morph detection submissions accepted! Google: FRVT MORPH
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FRVT MORPH Test Data

From non-expert
tools + apps
Visible artifacts

Source: NIST

From automated methods
Moderate to minimal artifacts

From commercial-graphics tools
Print + scanned
Very minimal artifacts

[1] Makrushin, A., Neubert, T., Dittmann, J., 2017. Automatic generation and detection of visually faultless
facial morphs, In Proc. 12th Int. Joint Conf. on Computer Vision, Imaging and Computer Graphics Theory
and Applications - Volume 6: VISAPP, pp. 39-50.

[2] Neubert, T., Makrushin, A., Hildebrandt, M., Kraetzer, C., Dittmann, J., 2018. Extended StirTrace
Benchmarking of Biometric and Forensic Qualities of Morphed Face Images, IET Biometrics, Vol. 7, Issue 4,
pp. 325-332.

[3] M. Ferrara, A. Franco, and D. Maltoni, "Face Demorphing," IEEE Transactions on Information Forensics
and Security, vol. 13, no. 4, pp. 1008-1017, April 2018.

[4] M. Ferrara, A. Franco, and D. Maltoni, "The Magic Passport," in IEEE International Joint Conference on
Biometrics (1JCB), Clearwater, Florida, USA, 2014, pp. 1-7.

[5] M. Ferrara, A. Franco, and D. Maltoni, "On the Effects of Image Alterations on Face Recognition
Accuracy," in Face Recognition Across the Electromagnetic Spectrum. Switzerland: Springer International
Publishing, 2016, pp. 195-222.

[6] Robin S. S. Kramer, Michael O. Mireku, Tessa R. Flack, and Kay L. Ritchie. Face morphing attacks:
Investigating detection with humans and computers. Cognitive Research: Principles and Implications,
4(1):28, 2019. 12



Use case #1: Single-Image Morph Detection

Morphed image or not?

Source: NIST

Use Case: Attack on enrollment

* Untrusted capture
 Upload to server

Protocol: Given single image X in isolation, produce

1) Morph decision => APCER, BPCER
2) “morphiness” score => DET analysis

Morphiness = F(X)

Evaluation: ISO/IEC 30107-3 metrics

* Attack Presentation Classification Error Rate (APCER): proportion of morph attack
samples incorrectly classified as bona fide presentation (missed detection rate over
morphed images) => System Insecurity

* Bona Fide Presentation Classification Error Rate (BPCER): proportion of bona fide
samples incorrectly classified as morphed samples (false detection rate over non-
morphed images) => User Inconvenience
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Use case #2: Two-Image Differential Morph Detection

Morph detection given live image?

Use Case: Attack during verification (e.g., at eGate)
* Prior morph enrolled e.g. on identity document

Morphed image is This image represents
contained in a a live capture during
passport an eGate border

PASSPORT crossing, say.

Source: NIST

Goal: Determine that image on passport is morphed by using
the additional information available in the live capture image.

Protocol: Given suspected morph X
and live image Y, produce

1) Morph decision

2) “morphiness” score

Evaluation: ISO/IEC 30107-3 metrics
 BPCER/False Detection Rate
* APCER/Morph Miss Rate

14



Use case #3: One-to-one Morph Acceptance

Do subjects verify against morphed image?

Use Case: Test FR algorithm resistance against
morphing

Protocol: Given image X and image Y, produce
verification similarity score

Evaluation: ISO/IEC 30107-3 metrics

* Mated Morph Presentation Match Rate
(MMPMR)

* False non-match rate

* False match rate

Source: NIST

Involvement from commercial face recognition community!
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FRVT MORPH Participation [June 2018 — current] NIST

* Single-image morph detection — 9 submissions
 Hochschule Darmstadt
 Norwegian University of Science and Technology
* University of Bologna

 Two-image differential morph detection — 8 submissions
* Hochschule Darmstadt

Currently all prototypes from European academic entities

US DHS S&T sponsored CITeR research efforts
* Clarkson University
* West Virginia University
e University at Buffalo

16



Measuring BPCER (false detection rates) NIST

What false detection rates are operationally acceptable?

BPCER

< 0.5%

<1.0%

< 5.0%

Source: Survey from participants of the ICBB 2019: Morphing and
Morphing Attack Detection Methods Conference

Method: Use large sets of live-capture
photos

* Enables measurement of accuracy at
low BPCER
* Bona fide datasets of

e 1047 389 live-capture mugshot photos
e 871 984 live-capture visa photos

Goal: HIGH morph detection rates with LOW false detection rates

17



False Detection Rate
Bona Fide Classification Error Rate (BPCER)

Accuracy gains since 2019
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False Detection Rate
Bona Fide Classification Error Rate (BPCER)

Accuracy gains since 2019
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Are “less sophisticated” morphs easier to detect by algorithms? NIST
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Impact of Image Resolution - is bigger better?
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Other Potential Mitigations

n Live Enroliment

n Trusted external capture

E.g., Norway, Sweden - Signed photobooths
- Is it politically tenable in large countries? - Certified photographers (e.g., Ireland,
- Doesn’t address morphs that are already in France)
circulation
ﬂ Eliminate print + scanned photos n Use FR on centralized database
Community consensus that print and Perform 1:N duplicate check; look for
scanned photos introduces artifacts that multiple high scoring candidates

make it more difficult for humans and
algorithms to do morph detection

H Awareness

Train relevant personnel about morphs!

- Ineffective unless multiple subjects have
been previously encountered

22



Thank you!

Mei Ngan
National Institute of Standards and Technology (NIST)
mei@nist.gov | frvt@nist.gov

National Institute of FRVT 1:N Identification: https://pages.nist.gov/frvt/html/frvt1N.html
Standards and Technology FRVT MORPH: https://pages.nist.gov/frvt/html/frvt morph.html
U.S. Department of Commerce FRVT Quality Assessment: https://pages.nist.gov/frvt/html/frvt guality.html

FRVT Face Masks: https:
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